Dissipative spin chains: Implementation with cold atoms and steady-state properties

Accepted

We propose a quantum optical implementation of a class of dissipative spin systems, including the XXZ and Ising model, with ultra-cold atoms in optical lattices. Employing the motional degree of freedom of the atoms and detuned Raman transitions we show how to obtain engineerable dissipation and a tunable transversal magnetic field, enabling the study of the dynamics and steady-states of dissipative spin models. As an example of effects made accessible this way, we consider small spin chains and weak dissipation and show by numerical simulation that steady-state expectation values display pronounced peaks at certain critical system parameters. We show that this effect is related to degeneracies in the Hamiltonian and derive a sufficient condition for its occurrence.