Spectral and transport properties of time-periodic \mathcal{PT}-symmetric tight-binding lattices
Giuseppe Della Valle and Stefano Longhi
Accepted
We investigate the spectral properties and dynamical features of a time-periodic PT-symmetric Hamiltonian on a one-dimensional tight-binding lattice. It is shown that a high-frequency modulation can drive the system under a transition between the broken-PT and the unbroken-PT phases. The time-periodic modulation in the unbroken-PT regime results in a significant broadening of the quasi-energy spectrum, leading to a hyper-ballistic transport regime. Also, near the PT-symmetry breaking the dispersion curve of the lattice band becomes linear, with a strong reduction of quantum wave packet spreading.